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Abstract 

Manufacturing of tool molds represents a single part production characterized by varying designs and various different process 

steps. The associated milling processes require a precise and complex process planning, which subsequently has to be optimized 

by running-in tests and adaptions to meet the quality specifications. Moreover, high costs of the raw material and the milling tools 

require a particularly careful and therefore time-consuming choice of process parameters, mainly based on human experience. 

Often, subsequent rework becomes necessary. This results in additional efforts during the process. For that purpose, machine 

learning can be used to find correlations between the process parameters in the process planning and the resulting shape error prior 

to the first cut. Hereby, the choice of the machine learning algorithm and its hyperparameters largely defines the prediction quality. 

As a disadvantage, finding the optimum of these hyperparameters to model a process with machine learning can be a tedious, time-

consuming and error-prone procedure that also highly relies on the experience of the respective user. Automated machine learning 

(AutoML) offers a method to automatically search for a well-performing set of hyperparameters for a specific machine learning 

application. This study shows the performance improvements achieved by AutoML to predict shape errors that can occur during 

milling. For this purpose, a series of experimental investigations was conducted to collect representative data in a varying pocket 

milling process of cold working steel 1.2842. The design of experiment is supposed to ensure a variety of process parameters. As 

a novel addition, the machine learning model is incorporating the time-variant behavior such as tool wear. Additionally, the study 

is making a more realistic approach as it is considering error influences from CAD until the machined part in contrast to other 

studies. We show that we can achieve substantial improvements in terms of prediction RMSE by using the AutoML tool auto-

sklearn; depending on the data between a factor of five and three orders of magnitude compared to plain default settings. This study 

demonstrates the high potential of using automated machine learning regarding the reduction of efforts in process planning due to 

improved prediction of shape errors and the ease of using state-of-the-art machine learning. 
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1. Introduction 

Modern production industry changes towards a higher 

variety of product design combined with shorter development 

cycles. In addition, the lot sizes of the respective products have 

decreased over time. Examples for this development can be 

found especially in the aerospace industry and in die and mold 

manufacturing.  

Due to the conditions described above, the planning and run-

in procedure of the manufacturing process is even more relevant 

than before. For a smaller production lot size, the work 

preparation represents a higher percentage of the overall 

production costs in this scenario. Moreover, scrap-parts cannot 

be tolerated. Thus, improvement of production quality is 

becoming more and more important. 

Generally, in machining, the planning with Computer-Aided 

Manufacturing methods (CAM-planning) is a work-intensive 

upstream step necessary to fulfill a sufficient process. The 

CAM-planning determines the tool path. Moreover, process 

parameters, like feed rate, material removal rate, chip thickness 

etc., are defined. These parameters are ordinarily responsible 

for quality parameters e.g. the resulting shape error [1]. In 

addition, the state of the tool wear is responsible for an increase 

in process forces and thus in shape errors. Typically, optimal 

parameters have to be found by workpiece-specific testing and 

run-in-procedures, which strongly depend on the expert 

knowledge of employees. This represents a major financial and 

time-critical challenge. 

Another method to improve part quality is offered by 

machine learning (ML) approaches. Machine Learning uses 
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data to create a surrogate model that is supposed to represent 

the underlying correlation of the  respective process. Thus, 

correlations can be made between the process parameters and 

the resulting quality parameters. For this purpose, varieties of 

regression models are available from simple linear regression 

to sophisticated Support Vector Machines. Hyperparameter are 

responsible for the robustness and effectivity of the learning 

process of the algorithm. 

In this context, simulation of engagement conditions of the 

tool can give enhanced insights of the process. Implementing 

the simulated engagement conditions and the state of tool wear, 

the resulting shape error can be predicted with ML. Using these 

methods, the efforts in process planning can be reduced. 

However, in order to use ML algorithms efficiently, it is crucial 

to choose a well-performing ML algorithm, the underlying ML 

model class and the corresponding hyperparameters. In this 

paper, we study the benefits of using automated ML [2], which 

supports users of ML by determining efficient ML pipelines, 

incl. algorithm, model class and hyperparameters.  

2. State of the Art 

Shape errors (i.e. difference between planned and produced 

shape of workpieces) in milling are unwanted multi-causal 

effects that consist of systematical and random influences. This 

results in a partially non-deterministic behavior in milling 

experiments. Repeated experiments do therefore not 

necessarily produce the same output. Schmitz et al. [3] 

conducted a study to determine the isolated causes for resulting 

geometrical shape errors. They showed that the main driver in 

milling for that setup are cutting forces. Other causes can be 

thermal expansion of the workpiece, tool and spindle as well as 

quasi-static geometric errors, caused by misalignment of the 

axis. Furthermore, the impact of vibrations in the process is an 

important factor. The composition and magnitude of the 

mentioned errors is specific for the respective process setup and 

engagement conditions. Moreover, errors in the controlling of 

machine axes can lead to deviations from the planned tool path 

and thus result in shape errors. 

There are several strategies to avoid shape error during 

milling. One of these strategies is to implement a sensory driven 

control loop to adapt for unwanted effects during the process. 

This does usually not require any changes during the process 

planning phase, but can require extensive physical 

refurbishment of the machine. For example, Denkena et al. [4] 

used a dynamometer to collect information about the cutting 

forces during the machining procedures. These forces are then 

used to model a resulting shape error via an appropriate model. 

In-process, a tool path compensation was done according to the 

calculated shape error. 

In contrast to compensation of potential shape errors during 

the process, a different strategy is offered by considering the 

erroneous behavior of the process during process planning. For 

this purpose, analytical, numerical, empirical and machine 

learning methods can model this behavior.  

In analytical approaches, physical laws and correlations 

model the behavior of the process. This was done by Zeroudi 

and Fountaine [5]. They described the tool via a modified 

cylindrical cantilever beam. Subsequently, using the Euler-

Bernoulli beam equation to calculate the displacement of the 

tool. This approach does not consider the remaining error 

influences. 

Saffar et al [6] offer a numerical method. Here, the milling 

tool and the workpiece are modeled by finite elements. Both, 

the cutting force and the tool deflection are calculated in this 

simulation. Hereby the elastic deformation of the workpiece 

and machine were neglected. 

An approach using machine learning was done by Dittrich et 

al. [7]. Within this study, a Support Vector Machine (SVM) was 

used to model the shape error in a 5-axis machining process. 

Gathered knowledge of resulting shape errors and respective 

engagement conditions were used to train this SVM. 

Subsequently, a compensation was conducted to minimize the 

resulting shape deviation of a workpiece. Due to the generation 

of workpiece independent knowledge this method can also be 

used for different workpiece geometries. It was shown that 

shape error compensations can be conducted for new parts 

using transferable process knowledge. In this experimental 

setup, the tool is changed after three samples in order to limit 

the effect of tool wear. 

To find enhanced engagement conditions, that are usually 

not apparent within the CAM-Planning, but useful for ML-

approaches, different approaches in simulation are used [8, 9, 

10]. For that purpose, both workpiece and tool have to be 

digitally available.  

Although the insight that the correct choice of an algorithm 

and its hyperparameter for a dataset at hand is quite old [11, 12], 

only fairly recently the field of automated machine learning 

(AutoML) found solutions to efficiently make these decisions. 

Well-known approaches include random search [13], genetic 

algorithms [14] or Bayesian Optimization [15]. Although, the 

early AutoML approach considered algorithm selection and 

hyperparameter optimization as independent problems, the 

joint optimization to obtain well-performing ML pipelines [16], 

incl. pre-processing, algorithm selection, hyperparameter 

tuning and post-processing, is state-of-the-art [17, 18, 19] for 

tabular, structured data.  

This paper presents a novel approach to use AutoML and 

information about the tool wear for the optimization of milling 

processes. In contrast to existing methods, the approach uses 

more efficient ML methods to achieve higher prediction quality 

and a significantly smaller rooted-mean-square error (RMSE). 

3. Approach 

To investigate the effectiveness of AutoML regarding 

quality predictions in machining applications, experimental 

data of Dittrich et al. [20] is used to achieve comparable results 

as this study is also investigating the RMSE of ML algorithms.  

In addition, to consider tool wear regarding the shape error 

in milling, both empirical data and simulation-based data will 

be gathered during a new experimental setup. The simulation-

based data is preferred in this context as it is a non-invasive and 

scalable method. Using a dexel-based cutting simulation (i.e. 

IFW CutS) [21] in-depth knowledge of the cutting process can 

be gathered. Hereby, the simulation can calculate time-specific 

engagement conditions. These cutting conditions can be 

composed with the associated measured shape error to 
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formulate a regression problem. Moreover, empirical data of 

the width of flank wear is collected between the processes to 

present the actual tool wear state. This was done to see if there 

are any benefits of using this empirical data versus using 

simulation based data. Thereby, time-variant behavior of the 

experiment is considered within this study. 

We chose one of the state-of-the-art approaches for AutoML 

on tabular and structured data, namely auto-sklearn [22, 18] that 

combines Bayesian Optimization [23] with ensembling. 

Bayesian optimization iteratively fits a predictive surrogate 

model to all observed settings and corresponding RMSE values 

such that a trade-off between exploration and exploitation can 

be achieved via an acquisition function. Auto-sklearn is based 

on the Bayesian Optimization tool SMAC [24] that uses a 

random forest as predictive model and expected improvement 

as acquisition function. Compared to other optimization 

techniques, Bayesian Optimization is very sampling efficient 

for expensive black-box problems. In addition, ensembling is 

an important component of auto-sklearn because (i) ensembling 

of several machine learning models can help to decrease 

prediction errors [25] and (ii) auto-sklearn trains and evaluates 

several machine learning models as part of Bayesian 

Optimization. Figure 1 shows the general workflow of auto-

sklearn without meta-learning. Auto-sklearn is interesting for 

this study here because it allows the highest level of abstraction 

for using machine learning; i.e., with only three lines of code, a 

well-performing machine learning pipeline can be trained. This 

trades off human expertise in knowing how to apply machine 

learning efficiently for compute power. 

 

 

Figure 1: Workflow of AutoSklearn 

4. Experimental setup 

Previously being used data of Dittrich et al. [20] has been re-

evaluated using AutoML. The aim of the re-evaluation is to 

show the potential of AutoML focusing the resulting RSME. In 

this context, the feature vector  

 

X = (

vf
Qw
dth

)                                                                     (1) 

 

was used. Hereby, X is composed by is the feed velocity vf, the 

material removal rate Qw and the projected distance between 

surface point to the TCP along tool axis dth. The RMSE shows 

the average deviation between the predicted and the measured 

shape error. 

In order to study the effects of different approaches using 

machine learning on this data, we compare: (i) default settings 

of an SVM with standardization as pre-preprocessing (“SVM”), 

(ii) a SVM with the settings of “Dittrich et al.”, (iii) optimizing 

the hyperparameters of the SVM with auto-sklearn in v.0.9.0 

(“SVM (HPO)”), (iv) the setting of (iii) and adding the search 

for preprocessing on top of it (“SVM (HPO & prepro.)”), (iv) 

the search across all regression models and preprocessing 

techniques (“AutoML (w/o Ens.)”) and (v) the setting of (iv) 

and adding ensembling of the best models (“AutoML”). For the 

data of Dittrich et al. sample no. 9 and n = 50 was used. To run 

auto-sklearn, we used an inner cross-validation on the training 

data to estimate the final generalization perform to the test data. 

For the new data, we used an outer 5-fold cross validation. In 

all cases, we optimized for RMSE and limited the training and 

evaluation of a machine learning model to 30 seconds. 

The full search space of auto-sklearn (iv + v) consisted of 

Ada-Boost, ARD Regression, Decision Tree, Extra Trees, 

Gaussian Process, Gradient Boosting, K-Nearest Neighbor, 

linear SVM, non-linear SVM, Random Forest, Ridge 

Regression and SGD from the scikit-learn package. Each of 

these are parameterized with their according hyperparameters. 

In addition, auto-sklearn can consider 17 pre-processing 

techniques, incl. PCA, truncated SVD or random tree 

embeddings, and its hyperparameters. Overall the full search 

space of auto-sklearn consisted of 140 hyperparameters. All 

machine learning experiments were performed on Intel Core i9-

9900K CPUs with 3.60 GHz and 65 GB RAM, from which at 

most 3 GB were used for training and evaluating a machine 

learning model. 

To gain further insights on the effects of tool wear, a new 

experimental setup was layed out. For this purpose, pocket 

milling processes (see Figure 2) were carried out at a constant 

cutting speed vc = 120 m/min in down milling. The tests were 

carried out on a CNC machine type DMG HSC 30 using solid 

carbide milling tools type KENNAMETAL HARVI 1TE with 

a diameter D = 6.0 mm and a number of teeth z = 4. Cold 

working steel 1.2842 was used as workpiece material.  

Figure 2: Experimental setup 
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A machine-integrated tactile probe type BLUM TC52 was 

used to determine the shape error at defined points. The width 

of flank wear land VB of the tool was measured optically with 

a digital microscope type VHX600 from Keyence. The 

resulting shape error as well as the wear condition of the tool 

were measured after four milled pockets and a corresponding 

cooling time of the workpiece. The machine-integrated tactile 

probe measures 3D points at 32 defined positions of the 

manufactured workpiece, which are located on the sidewalls of 

the pockets. These points are merged with the target geometry 

as defined by the CAD-model. The distance between the 

corresponding points presents the resulting shape error 

  

𝑑𝑠 = √(𝑥𝑚 − 𝑥𝑐)² + (𝑦𝑚 − 𝑦𝑐)²                                          (2) 

 

where (𝑥𝑐 , 𝑦𝑐) are the points as designed in CAD and (𝑥𝑚 , 𝑦𝑚) 
are the measured points on the expected location, respectively. 

To detect the influence of the feed velocity on the wear 

progress the feed speed vf  was varied between 710 and 

1184 mm/min. The end of tool life was defined by a width of 

flank wear land VB ≥ 75 µm. The material removal simulation 

IFW CutS is calculating process conditions as for example the 

material removal rate (𝑄𝑤), depth of cut (𝑎𝑝), width of cut (𝑎𝑒), 

feed velocity of the tool (𝑣𝑓), acceleration of the tool (𝑎𝑓) for 

each simulation iteration. For that purpose, actual machine axis-

data is used to calculate the simulation via the software library 

ACCON-AGLink by Delta Logic [8].  

To show how time-variant data is benefiting the prediction 

of shape errors, a splitting of feature sets was done. Feature set 

1 consists of following feature vector  

 

X =

(

 

r
vf
af
Qw
ae )

                                                                            (3) 

 

where r is the radius of the respective engagement point. 

The feature vector of feature set 2 is complemented by 

information about the accumulated volume 𝑉𝑤  that has been 

removed by the respective tool. This is done to see if data from 

simulation regarding the consideration of progressive tool wear 

and its influence can benefit the predictions. The volume Vw is 

defined as  

 

Vw = ∫ Qwdt
ts
t0

                                                                                              (4) 

 

where ts is the point in time where the respective measuring 

point was milled and t0  is the point in time where the 

experiment started.  

To find out what the benefit of using the measured flank 

wear mark width is, the feature vector has furthermore been 

supplemented by these 4 variables to create feature set 3.  

5. Results 

Effectivity of AutoML 

 

As presented in Figure 3 the default Support Vector Machine 

(SVM) achieves the highest RMSE of all ML algorithms with 

an RMSE ≈ 100 mm. AutoML and past results from Dittrich et 

al. show already improved RMSE of predictions by the factor 

of 104. The SVM with Hyper Parameter Optimization (HPO) 

show both with and without preprocessing an  

RMSE ≈ 0.001 mm. AutoML without ensembling delivers an 

even better result of RMSE ≈ 10−5 mm  and mainly used a 

surprisingly simple Ridge Regression or a Gaussian Process. 

AutoML without and with ensembles was able to achieve an 

even better RMSE value on the inner cross-validation. 

However, adding ensembles hurt the RMSE on this test data, 

since ensembling added a bit noise to the predictions which in 

turn increased the test RMSE. 

Hereby, the resulting RMSE is also depending on the 

invested time for searching for the best combination of 

preprocessing, regression model and hyperparameters as 

presented in Figure 4. It can be seen that the RMSE is 

improving significantly over time and outperforms the previous 

state of the art of Dittrich et al. after roughly 80 seconds. After 

roughly 5 min, auto-sklearn achieved its final RMSE. 

Consideration of tool wear 

 

Regarding the newly conducted experiments with effect of 

time-variant influences, the difference in the RMSE of 

predictions is presented in Figure 5. Hereby, it is noticeable that 

Figure 3: Comparison of RMSE for different ML-Methods 

Figure 4: Development of RMSE over time in AutoML 
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simulation-based data about the material removal volume is 

significantly improving prediction results. In this case, only the 

integrated material removal rate was added to formulate feature 

set 2. This shows that effects of tool wear can already be 

considered with benefits within process planning. Using 

additional information about the measured flank wear mark 

width is barely improving results in this study.  

Also in this case, results of RMSE were highly correlated to 

the invested computation time as seen in Fig 6. Although 

slightly more expensive compared to the data from Dittrich et 

al., auto-sklearn was also able to outperform SVM default 

settings in less than 1 min and needed only few minutes to 

achieve state of the art. 

6. Conclusion  

Previous studies regarding quality predictions in machining 

were mostly using SVM as a regression method. It was rarely 

shown how the hyperparameters were chosen or how they could 

be optimized regarding improved RMSE of predictions. Thus, 

being unclear how the model selection and hyperparameter 

optimization would effect applications in machining. Showing 

that AutoML can decrease prediction errors by a factor of 600 

compared to previous studies, this method shows to have a great 

impact on machine learning applications in production. Since 

applying AutoML with tools such as auto-sklearn does require 

a lot less expertise in machine learning compared to manually 

making all decisions, we recommend to compare against 

AutoML as a baseline in all further applications of machine 

learning to predict errors in machining applications.  

Regarding the general predictions of shape errors in 

industry-oriented applications, it was shown that the 

consideration of variables that can indicate the tool wear have 

shown improvements in the prediction of shape errors. Hereby, 

it was sufficient to use information from simulation alone to 

make robust predictions. For future studies, the extended 

variation of process parameters and materials will be of interest 

as well as the combination of transfer learning for other 

geometries and tool wear consideration regarding shape errors. 

Moreover, the implementation of predicted shape errors with 

regard to tool path compensation will be focus of future 

research. 
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